From robots to the Google Siri and now the introduction of the new Google Duplex, Artificial intelligence seems to have taken considerable strides to become more and more humane. The demand for machine learning and AI has grown exponentially. Additionally, the community itself has increased as a result, and that has led to the evolution of some AI frameworks that make learning AI much easier. In this article, we shall discuss some of the best frameworks to get you started with AI development.
Tensor Flow
Hailing from the Google family, Tensor Flow proves to be a robust open-source framework that supports deep learning and which can be accessed even from a mobile device. Tensor flow is considered an apt tool for statistic program development. As it offers distributed training, machine models can be trained a lot more effectively at any level of abstraction that the user prefers. Features
A scalable multi programming interface for easy programmingStrong growth drivers, with a strong open source communityProvides extensive and well-documented manuals for people
Pros
The language used by tensor flow is Python, which is very popular nowadays.This framework is capable of high computational power. Hence, it can be used on any CPU or GPU.Uses computational graph abstraction to create machine models
Cons
To make a decision or prediction, the framework passes the input data through multiple nodes. This can be time-consuming.It also lacks many of the pre-trained models of AI.
Check out this Udemy course if interested in learning Tensor Flow.
Microsoft CNTK
Microsoft CNTK is a faster and more versatile open-source framework that is based on neural networks that support text, message, and voice remodeling. It provides an efficient scaling environment due to a faster overall evaluation of the machine models while taking care of accuracy. Microsoft CNTK has integrations with major massive datasets, making it the leading choice to be adopted by big players like Skype, Cortana, etc., with a very expressive easy-to-use architecture as well. Features
Highly optimized to provide efficiency, scalability, speed, and high-level integrationsHas built-in components such as hyperparameter tuning, supervised learning models, reinforcement, CNN, RNN, etc.Resources are utilized to provide the best efficiency.Own networks that can be expressed efficiently such as full APIs, both high level and low level
Pros
As it supports Python and C++, this framework can work with multiple servers at once and hence makes the learning process quicker.It has been developed keeping in mind the recent developments in the world of AI. Microsft CNTK’s architecture supports GAN, RNN, and CNN.It permits distributed training to train machine models effectively.
Cons
It lacks a visualization board and mobile ARM support.
Caffe
Caffe is a deep learning network that comes along with the preloaded set of trained neural networks. This should be your first pick if your deadline is close. Known for its image processing capabilities, this framework also has extended support of MATLAB. Features
All of its models are written in plaintext schemasIt offers massive speed and highly efficient work since it is already preloaded.An active open source community for discussion and collaborative code.
Pros
Interlinking C, C++, and Python, it also supports the modeling of CNN(convolutional neural networks)Efficient when computing numerical tasks due to its speed.
Cons
Caffe is not capable of handling complex data but is comparatively fast while handling the visual processing of images.
Theano
Using GPUs in place of CPU, this framework supports deep learning research and is capable of delivering accuracy for networks that need high computational power. For instance, the computation of multi-dimensional arrays requires high power, and Theano is capable of that. Theano is based on python, which is a proven programming language when it comes to faster processing and response. Features
Evaluation of expressions is faster due to dynamic code generationIt provides an excellent accuracy ratio, even when values are minimal.Unit testing is a significant feature of Theano, as it allows the user to self-verify their code as well as to detect and diagnose errors easily.
Pros
Theano offers efficient support for all the data-intensive applications but requires combining with other libraries.It is efficiently optimized for the CPU as well as the GPU.
Cons
There will be no more updates or addition of features to the current version of Theano.
Features
There are tailored Tools for every level of experience in the AWS even if you are a beginner, data scientist, or developerSecurity is of utmost importance, so all data is encryptedProvides extensive tools for data analysis and comprehensionIntegrations with all major datasets
Pros
You don’t need to write a lot of code with this framework. Instead, it lets you interact with the AI-powered framework via APIs.Commonly used by data scientists, developers, and ML researchers.
Cons
It lacks flexibility as the entire framework is abstracted, so if you’d like to choose a particular normalization or machine learning algorithm, you can’t.It also lacks data visualization.
Torch
The Torch is an open-source framework that could support numerical operations. It offers numerous algorithms for the faster development of deep learning networks. It is used extensively in the AI labs of Facebook and Twitter. There is a python based framework known as PyTorch, which has proven to be simpler and more reliable. Features
Features a lot of routines to index, slice, transpose with an N-dimensional array modelOptimization routines are present, primarily numeric based with neural network modelsGPU support is highly efficientIntegrates easily with the iOS and Andriod
Pros
Very high flexibility regarding languages and integrationsHigh level of speed and GPU utilization efficiencyPre-existing models are available to train the data on.
Cons
Documentation is not very clear to the users, so it presents a steeper learning curveLack of code for immediate use, so it takes time.It is initially based on a programming language called Lua, and not many are aware of it.
Accord.Net
Accord.net is a C# based framework that assists in the development of neural networks used for audio and image processing. Applications can use this commercially as well to produce computer vision applications, signal processing, as well as statistics applications. Features
Mature, well-tested codebase, as it was started in 2012Provides a comprehensive set of sample models and datasets to get your application started quickly
Pros
It is continuously supported by an active development team.This well-documented framework efficiently handles numerical intensive computation and visualizationImplementation of algorithms and signal processing can be performed conveniently with this framework.It can easily handle numerical optimization and artificial neural networks.
Cons
It is not very well known when compared to other frameworks.Its performance is slower compared to other frameworks.
Apache Mahout
Apache Mahout, being an open-source framework, aims at the development of scalable machine learning frameworks. It doesn’t deal with APIs as such but helps in the implementation of new machine learning algorithms by data scientists and engineers. Features
Known for it’s Scala DSL which is mathematically very expressiveExtends support to multiple backends that are distributed.
Pros
It aids in clustering, collaborative filtering, and classification.Its computational operations make use of Java libraries, which are faster.
Cons
Python libraries are not as compatible as Java libraries with this framework.Its computational operations are slower than Spark MLib.
Spark MLib
Spark MLib framework by Apache is supported by R, Scala, Java, and Python. It can be loaded with Hadoop workflows for providing machine learning algorithms such as classification, regression, and clustering. Apart from Hadoop, it can also be integrated with the cloud, Apache, or even standalone systems. Features
High performance is one of the key elements and is said to be 100 times faster than MapReduceSpark is exceptionally versatile and runs in multiple computing environments
Pros
It can process vast amounts of data quickly, as it works on iterative computation.It is available in many languages and easily pluggable.It cycles large scales of data processing with ease.
Cons
It can be plugged with Hadoop only.It is difficult to understand this framework’s mechanism, without extensive work on the same.
AI Framework Comparision
I hope the above helps you to choose the AI framework for your next modern application development. If you are a developer and looking to learn deep learning to get into AI, then you may consider taking this specialized online course by Coursera.